Further action is required to make this featured image accessible
The below criteria must be satisfied:
- Add featured-image alt tag (in page properties OR on image metadata in the dam)
The image will not display until the issue above is resolved.
Secret of the Crystal's Corners: New Nanowire Structure Has Potential to Increase Semiconductor Applications
Theres big news in the world of tiny things.
New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something thats 1,000 times thinner than the typical human hair a semiconductor nanowire.
UCs Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues from across the US and around the world recently have published the research paper Optical, Structural and Numerical Investigations of GaAs/AlGaAs Core-Multishell Nanowire Quantum Well Tubes in
, a premier journal on nanoscience and nanotechnology published by the American Chemical Society. In the paper, the team reports that theyve discovered a new structure in a semiconductor nanowire with unique properties.
This kind of structure in the gallium arsenide/aluminum gallium arsenide system had not been achieved before, Jackson says. Its new in terms of where you find the electrons and holes, and spatially its a new structure.
EYES ON SIZE AND CORNERING ELECTRONS
These little structures could have a big effect on a variety of technologies. Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. Theyre made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties. Many semiconductors are made of silicon, but in this case they are made of gallium arsenide. And while widespread use of these thin nanowires in new devices might still be around the corner, the key to making that outcome a reality in the coming years is whats in the corner.
Further action is required to make this image accessible
One of the below criteria must be satisfied:
- Add image alt tag OR
- Mark image as decorative
The image will not display on the live site until the issue above is resolved.
By using a thin shell called a quantum well tube and growing it to about 4 nanometers thick around the nanowire core, the researchers found electrons within the nanowire were distributed in an unusual way in relation to the facets of the hexagonal tube. A close look at the corners of the tubes facets revealed something unexpected a high concentration of ground state electrons and holes.
Having the faceting really matters. It changes the ballgame, Jackson says. Adjusting the quantum well tube width allows you to control the energy which would have been expected but in addition we have found that theres a highly localized ground state at the corners which then can give rise to true quantum nanowires.
The nanowires the team uses for its research are grown at the Australian National University in Canberra, Australia one partner in this project that extends to disparate parts of the globe.
AFFECTING THE SCIENCE OF SMALL IN A BIG WAY
The teams discovery opens a new door to further study of the fundamental physics of semiconductor nanowires. As for leading to advances in technology such as photovoltaic cells, Jackson says its too soon to tell because quantum nanowires are just now being explored. But in a world where hundreds of dollars worth of technology is packed into a 5-by-2.5 inch iPhone, its not hard to see how small but powerful science comes at a premium.
The team at UC is one of only about a half dozen in the US conducting competitive research in the field. Its a relatively young discipline, too, Jackson says, and one thats moving fast. For such innovative science, he says its important to have a collaborative effort. The team includes scientists from research centers in the Midwest, the West Coast and all the way Down Under: UC, Miami University of Ohio and Sandia National Laboratories in California here in the US; and Monash University and the Australian National University in Australia.
The teams efforts are another example of how UC not only stands out as a leader in top-notch science, but also in shaping the future of the discipline by providing its students with high-quality educational and research opportunities.
Were training students in state-of-the-art techniques on state-of-the-art materials doing state-of-the-art physics, Jackson says. Upon completing their education here, theyre positioned to go out and make contributions of their own.
Additional contributors to the paper are Jan Yarrison-Rice of Miami University, Oxford, Ohio; Bryan Wong of Sandia National Laboratories, Livermore, Calif.; Changlin Zheng, Peter Miller and Joanne Etheridge of Monash University, Victoria, Australia; and Qiang Gao, Shriniwas Deshpande, Hark Hoe Tan and Chennupati Jagadish of the Australian National University, Canberra, Australia.
Related Stories
OTR mural celebrates UC alumni success
April 4, 2025
The UC Alumni Association, UCAA, will mark its annual Alumni Celebration during its upcoming Alumni Week, April 7-13, with a community art project commemorating this year’s slate of alumni honorees receiving the organization’s top awards.
UC Journalism to host Hall of Fame, Young Alumni Awards
Event: April 24, 2025 6:00 PM
The College of Arts and Sciences’ journalism department will host the Hall of Fame and Young Alumni Awards to celebrate the achievements and accomplishments of its graduates. Induction into the UC Journalism Hall of Fame is a special honor reserved for UC alumni who have excelled in the profession of journalism and media, or individuals who have made a significant contribution to journalism at UC.
Bradford pear trees look pretty, smell awful. Why are they...
April 2, 2025
WLWT talks to UC biology Professor Theresa Culley about Ohio's ban on the sale or planting of nonnative and invasive pear trees. The trees are showing up in many parks and wild areas where they are crowding out native species.