UC Research Benefits Surgeons Making Decisions on How to Help Their Patients Breathe Easier
A more accurate and successful, yet complex approach used in designing an airplane is now taking off in the health care industry. The end result is helping patients with pulmonary disorders breathe easier, as well as their surgeons in considering novel treatment approaches.
Goutham Mylavarapu, a senior research associate in the University of Cincinnati Department of Aerospace Engineering, and Ephraim Gutmark, Ohio Eminent Scholar and UC distinguished professor of aerospace engineering and engineering mechanics, will present their research involving Computational Fluid Dynamics at the 39th American Institute of Aeronautics and Astronautics (AIAA) Dayton-Cincinnati Aerospace Sciences Symposium. The symposium takes place on Wednesday, March 5, in Dayton, Ohio.
Computational Fluid Dynamics, or CFD, uses computer algorithms to solve the flow of air or fluids for various applications. These algorithms are typically applied toward the design of aircraft as they quantify the contribution of airflow to flight requirements. While designing an aircraft, CFD is often considered both an accurate and less expensive approach before investing in building models and testing in air tunnels.
But over the past decade or so, the application of CFD to biological flows to study medically-related problems, including respiratory disorders has gained a great deal of interest. The computer simulations traditionally used for aircraft design found use in treating health conditions such as cystic fibrosis, asthma, sleep apnea and snoring.
The respiratory tract is a pathway of hard and soft structures that take in and push out airflow. Mylavarapu explains that a number of pulmonary upper airway disorders are associated with the vibration and/or deformation of the soft structures around the airway, leading to partial or complete collapse of the airway, as in the case of sleep apnea. In the more severe cases, these airway obstructions or deformations significantly impact quality of life and can even lead to death.
The researchers are using CFD simulations the most commonly used in the aerospace industry on actual medical data from patients with breathing disorders. Applying the equations to analyze the information theyre seeing in an MRI can provide surgeons with a better idea on how to treat the problem, increasing the success of any surgical approach as well as reducing the number of surgeries (and therefore a better recovery and less of a medical expense) for the patient.
Historically, the evaluation of a patients airway is limited to clinical diagnosis with medical imaging, explains Mylavarapu. But the variability and complexity in the airway anatomy can limit the success rate of surgery. CFD provides a better understanding of respiratory flow and enables individualized treatment when applied to what were seeing with medical imaging.
Surgery is sometimes based on experience-based intuition, and its not always guaranteed that the end result will be effective, says Gutmark. CFD is another tool to provide surgeons with more quantitative information about the possible outcome during the planning of a surgical procedure.
The researchers are using CFD to examine both the flow and structure equations of the respiratory challenges of individual patients. They also applied the method to a virtual surgery involving a medical case in Sweden, leading to a successful outcome for the patient.
The research, conducted in UCs Gas Dynamics and Propulsion Lab, is a partnership with Cincinnati Childrens Hospital Medical Center and the UC Medical Center, and is supported by funding from the National Institutes of Health (NIH #1R01HL105206-01).
The AIAA Dayton-Cincinnati Aerospace Sciences Symposium showcases cutting-edge aerospace research in the region and covers all general areas of aerospace science and technology. The event is organized and sponsored by the executive council of the AIAA Dayton-Cincinnati section and is sponsored by several organizations including the University of Cincinnati.
UCs aerospace program is recognized by the Ohio Board of Regents as an Ohio Center of Excellence in Aerospace for its contributions to research and to the states economy. UCs College of Engineering and Applied Science is a leader in engineering education, research and innovation, and is the world founder of cooperative education.
Related Stories
UC student uses co-op to explore future engineering, public...
January 22, 2025
Alex Woodall, a native of Sammamish, Washington, and a fifth-year civil engineering major at the University of Cincinnati, uses co-op to plan a future career in engineering and public service.
High school program draws local students to engineering
January 21, 2025
In a handful of cities around the world, including Cincinnati, GE Aerospace Foundation partners with local organizations and universities to run the Next Engineers program, a global college-and career-readiness program working to increase the diversity of young people in engineering. University of Cincinnati student Kallab Hailu Abebe was in the first cohort of GE Next Engineering Academy Graduates, and was inspired to enroll in a higher education engineering program after his experience.
1819 makerspace transforms into innovation boot camp
January 21, 2025
Kinetic Vision selected the Ground Floor Makerspace at UC’s 1819 Innovation Hub as the perfect place to provide Bearcat co-ops with advanced engineering skills.