UC engineers' CO2 conversion helps industry, addresses climate

National research team led by UC professor develops more efficient system to address climate change

Engineers at the University of Cincinnati created a more efficient way of converting carbon dioxide into valuable products while simultaneously addressing climate change.

In his chemical engineering lab in UC’s College of Engineering and Applied Science, Associate Professor Jingjie Wu and his team found that a modified copper catalyst improves the electrochemical conversion of carbon dioxide into ethylene, the key ingredient in plastic and a myriad of other uses.

Ethylene has been called “the world’s most important chemical.” It is certainly among the most commonly produced chemicals, used in everything from textiles to antifreeze to vinyl. The chemical industry generated 225 million metric tons of ethylene in 2022.

Wu said the process holds promise for one day producing ethylene through green energy instead of fossil fuels. It has the added benefit of removing carbon from the atmosphere.

“Ethylene is a pivotal platform chemical globally, but the conventional steam-cracking process for its production emits substantial carbon dioxide,” Wu said. “By utilizing carbon dioxide as a feedstock rather than depending on fossil fuels, we can effectively recycle carbon dioxide.”

The study was published in the journal Nature Chemical Engineering.

240207aWu004.CR2
UC College of Engineering and Applied Science Professor Jingjie Wu has a new study examining new carbon capture technology. He is looking for efficient ways to convert carbon dioxide into ethylene fuel.

In his chemical engineering lab, Associate Professor Jingjie Wu experiments with new ways to convert carbon dioxide into useful industrial products. Photo/Andrew Higley/UC Marketing + Brand

Wu’s students, including lead author and UC graduate Zhengyuan Li, collaborated with Rice University, Oak Ridge National Laboratory, Brookhaven National Laboratory, Stony Brook University and Arizona State University. Li received a prestigious graduate student award last year from the College of Engineering and Applied Science.

Zhengyuan Li in a labcoat and gloves works in a chemical engineering lab.

UC College of Engineering and Applied Science graduate Zhengyuan Li was lead author of a research project to convert carbon dioxide to ethylene. Photo/Jingjie Wu

The electrocatalytic conversion of carbon dioxide produces two primary carbon products, ethylene and ethanol. Researchers found that using a modified copper catalyst produced more ethylene.

“Our research offers essential insights into the divergence between ethylene and ethanol during electrochemical CO2 reduction and proposes a viable approach to directing selectivity toward ethylene,” lead author Li said.

“This leads to an impressive 50% increase in ethylene selectivity,” Wu said. “Ideally, the goal is to produce a single product rather than multiple ones.”

Sponsored by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Its Industrial Efficiency and Decarbonization Office is leading efforts to reduce fossil fuels and carbon emissions in industry wherever possible.

Li said the next step is refining the process to make it more commercially viable. The conversion system loses efficiency as byproducts of the reaction such as potassium carbonate begin forming on the copper catalyst.

“The electrode stability must be improved for commercial deployment. Our next focus is to enhance stability and extend its operation from 1,000 to 100,000 hours,” Li said.

Wu said these new technologies will help make the chemical industry greener and more energy efficient.

“The overarching objective is to decarbonize chemical production by utilizing renewable electricity and sustainable feedstock,” Wu said. “Electrifying the conversion of carbon dioxide to ethylene marks a significant stride in decarbonizing the chemical sector.” 

Featured image at top: UC Associate Professor Jingjie Wu is working on new technology to convert carbon dioxide into ethylene in his chemical engineering lab. Photo/RMitsch/Unsplash

240207aWu039.CR2
UC College of Engineering and Applied Science Professor Jingjie Wu has a new study examining new carbon capture technology. He is looking for efficient ways to convert carbon dioxide into ethylene fuel.

UC Associate Professor Jingjie Wu holds multiple U.S. patents on chemical engineering technology designed to improve industry. Photo/Andrew Higley/UC Marketing + Brand

Impact Lives Here

The University of Cincinnati is leading public urban universities into a new era of innovation and impact. Our faculty, staff and students are saving lives, changing outcomes and bending the future in our city's direction. Next Lives Here.

Related Stories

5640 Results
1

We love ‘Lucy’ — the AI avatar redefining UC tech transfer

July 17, 2024

In a visionary leap at the University of Cincinnati, the marriage of artificial intelligence and interactive technology has birthed "Lucy," a Smarthelp AI avatar poised to revolutionize how regional industries engage with UC's tech transfer initiatives.

2

NIS program opens new horizons for international student

July 17, 2024

In his pursuit of physics and a taste for research, Akash Khanikor ventured from his hometown in India's Assam to the University of Cincinnati, drawn by the promise of hands-on exploration early in his undergraduate career as a NEXT Innovation Scholar.

3

Camp aims to empower children, teens who stutter

July 17, 2024

A one-week, evidence-based program for children and teens who stutter at the University of Cincinnati will teach kids to communicate effectively, advocate for themselves and develop confidence about their communication abilities. Camp Dream. Speak. Live., which is coming to Cincinnati for the first time July 22-26, began in 2014 at the University of Texas at Austin. The Arthur M. Blank Center for Stuttering Education and Research at UT expects to serve more than 2,000 children at camps across the United States, Africa, Asia and Europe this year.

5

U.S. stroke survival is improving, but race still plays role

July 16, 2024

U.S. News & World Report, HealthDay and Real Health covered new research from the University of Cincinnati that found overall rates of long-term survival following stroke are improving, but Black individuals experience worse long-term outcomes compared to white individuals.

6

Collaborative pianist and vocal coach Kirill Kuzmin joins CCM’s faculty

July 16, 2024

UC College-Conservatory of Music Interim Dean Jonathan Kregor has announced the addition of Kirill Kuzmin to the college’s faculty of distinguished performing and media arts experts, researchers and educators. A Grammy-nominated collaborative pianist and vocal coach, Kuzmin begins his new role as Associate Professor of Opera/Vocal Coaching on Aug. 15, 2024.

8

Presidential challenge to UC: Join Ride Cincinnati to fight cancer

July 16, 2024

UC President Neville Pinto has again challenged every UC college and unit to send at least one rider to the September 14 Ride Cincinnati event to help fundraise for cancer research and cancer care. UC students ride free. Signup by July 31 for free UC-branded cycling jersey.

9

Building potential

July 16, 2024

Unexpected advice led to a new area of interest and growth for Andrew Matthews, leading him to the University of Cincinnati’s College of Engineering and Applied Science, construction management and cooperative education experiences at Turner Construction.